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Two extensive studies quantifying the ability of topomer shape similarity to forecast a variety
of biological similarities are described. In a prospective trial of “lead hopping”, using topomer
similarity for virtual screening and queries from the patent literature, biological assays of 308
selected compounds (representing 0.03% of those available, per assay type) yielded 11 successful
“lead hops” in the 13 assays attempted. The hit rate averaged over all assays was 39% (“activity”
defined as inhibition g20% at 10 µM), significantly greater than an unexpectedly high negative
control hit rate of 15%. The average “Tanimoto 2D fingerprint similarity” between query and
“lead hop” structures (0.36) was little more than the Tanimoto similarity between random drug-
like structures. Topomer shape and Tanimoto 2D fingerprint similarities were also compared
retrospectively, in their tendencies to concentrate together potential and actual drugs reported
to belong to the same “activity class”, for twenty classes. Among the most similar 3% of
structures (corresponding to “g0.85 Tanimoto” for these structures), an average of 62% of the
topomer similar selection possessed a near neighbor belonging to the same activity class, roughly
a one-third superiority over the “Tanimoto g 0.85” selection containing 48% actives in avoiding
false positives. Conversely, the least similar 75% of structures contained 0.3% actives for
topomer similarity vs 1.0% actives for Tanimoto 2D fingerprint similarity, a 3-fold superiority
for topomers in avoiding false negatives.

Improved prediction of the biological properties of
specified chemical structures is the main goal of most
computer-aided molecular design activities. Yet the
validation of new prediction methodologies is usually
limited to retrospective analysis of one or two literature
data sets. Prospective methodology validation, though
surely preferable, requires costly experiments, the test-
ing and perhaps synthesis of many compounds. So such
experiments are usually done only in connection with
a larger goal of discovering promising biological activity.
The resulting proprietary considerations then inhibit
publication of the experimental results and may also
bias the experimental design unfavorably for methodol-
ogy validation.

Several general issues may be considered when
evaluating any compound selection methodology valida-
tion study, retrospective or prospective.

How Diverse and Numerous Are the Validation
Data Sets, Both Structurally and Biologically? The
structural variety of both receptors and possible lig-
ands is so immense that when only a few data sets are
considered, there is a large risk of any apparent re-
lationship being artifactual. A case in point is the
frequency of 2D fingerprint similarity predicting biologi-
cal similarity. The initial report that a compound with

a 2D-fingerprint Tanimoto coefficient g0.85 to an active
compound had an 80% chance of sharing that activity,1
apparently confirmed by other workers,2,3 had to be sub-
stantially lowered to a 30% chance of sharing activity
when the results from testing of compounds in 115
assays were analyzed.4

What Sorts of Unrecognized Structural Bias
May Exist within the Validation Data Sets? Pub-
lished data sets are usually “polished” subsets, from
which the more awkward results have been filtered.
And, as has long been realized,5 even “complete” screen-
ing sets tend to be structurally biased, containing
disproportionately more of structures that apparently
resemble other promising structures. Although such
structural biases need not affect side-by-side compari-
sons of one methodology with another, they do make
the absolute performance of any methodology very
difficult to assess. To some degree, these performance
uncertainties can be alleviated by inspecting represen-
tative structural selections.

Is Any Aspect of the Validation Prospective? As
mentioned few methodology validations have been
prospective. Although retrospective studies can draw on
the many data sets freely available from the published
literature, prospective validation experiments obviously
can be far less vulnerable to bias. However, the much
higher cost of prospective experiments always tends to
limit their diversity and number.

Have Negative Control Experiments Been Per-
formed? Or are the results of such experiments simply
assumed? For example, a report that a methodology
contributed to a particular pharmaceutical discovery,
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though welcome, will surely lack a negative control: no
one can say whether a discovery would have been made
without the methodology. Negative control experiments
are especially onerous in prospective validations when
novel biological activity is also sought, as an apparent
waste of resources. However, our own initial expecta-
tions in the following work, that negative control experi-
ments were almost superfluous because the hit rates
from testing random compounds would surely be close
to zero, proved quite wrong.

Do the Validation Results Include Any Direct
Comparison with Alternative Approaches? Be-
cause comparisons with alternatives are less vulnerable
to data set biases than are absolute performances, they
can be done retrospectively and provide useful confir-
mation to the results of prospective experiments. Also
advantage can thereby be taken of the large amounts
of retrospective data, to offset any concerns about
generality caused by the relatively limited data ranges
practical in prospective validation.

We have for many years been applying topomer
similarity as a predictor of similarity in biological
activity, mostly in proprietary projects with collabora-
tors. A topomer is an invariant 3D representation of a
molecular fragment, generated from its 2D topology by
deterministic rules that produce absolute coordinates
for each of its constituent atoms.6 Topomers were
originally devised to enable shape similarity searching
of very large virtual libraries,7,8 within ChemSpace. It
was also observed in retrospective2 studies that topomer
shape similarity seemed to be at least as powerful a
predictor of biological similarity as any other molecular
descriptor investigated. In a prospective study, the
degree of topomer similarity to the “nearest” of four A2
antagonist query structures correlated with the hit rate
in the A2 assay, while correctly identifying a few
unexpectedly active ligands.9 More recently it was
reported10 that topomers provide a surprisingly robust
and general solution to the vexing challenge of CoMFA
alignments.

However neither of the two published topomer valida-
tion studies2,9 was large or complete enough to address
the above list of general validation issues in a more than
preliminary way. So to more fully assess and illustrate
the effectiveness of topomer similarity in predicting
biological similarity, we undertook and now report two
much more extensive studies: (1) prospective “lead
hopping”, by biological testing of 308 compounds that
were topomerically most similar, from among approxi-
mately 80000 candidates, to 14 query structures includ-
ing 13 different kinds of reported biological activity; (2)
retrospective comparison of topomer similarity with the
standard “Tanimoto 2D fingerprints”, in their propensi-
ties for concentrating together structures reported to
share a particular class of biological activity or “activity
class”, for 20 such activity classes as reported in the
World Drug Index.

Methods
Topomer Methodologies. Complete details of current

procedures for topomer shape similarity comparison and
topomer generation have recently been published.11 Topomer
shape similarity differs from most other shape comparison
methods in several fundamental ways:

(1) Topomer shape comparisons consider all the atoms, in
contrast to pharmacophore-based “3D searching” approaches

where “shape” comparison focuses on a small subset of atom-
like features.12

(2) Topomer shape comparisons are produced by combining
a set of fragment-to-fragment differences, rather than from
some operation on complete structures.

(3) Topomer shape comparison usually involves only one
“topomer” conformation for each fragment, rather than the
indefinitely large variety of conformations that most fragments
are capable of achieving.

(4) Topomers resemble one another, not to the extent that
achievable geometries among assumed critical features are
shared, but mostly to the extent that (a) the same spatial
volume or “field” elements are occupied or avoided by the
corresponding fragments (in their topomer conformations) and
(b) similar features occupy similar positions within a fixed
Cartesian reference frame.

(5) The topomeric difference between two molecules is the
minimum value found among the many fragment set compari-
sons that are usually possible.

The procedure for generating the topomer of a monovalent
molecular fragment may also be summarized as follows:

(1) A structurally distinctive “cap” is attached to the open
valence, and a CONCORD13 (3D) model is generated for the
resulting complete structure.

(2) This model is oriented to superimpose the “cap” attach-
ment bond (“root”) onto a vector fixed in Cartesian space.

(3) Proceeding away from this “root” attachment bond, only
as required to place the “most important” (typically the largest)
unprocessed group farthest from the root and the next most
important to the “right” of the largest (when looking along the
bond away from the root), acyclic torsional angles may be
adjusted, “stereocenters” inverted, and ring “puckerings”
standardized.11

(4) Removal of the cap completes the topomer conformation.
Note that the conventional force field energy (intramolecular

enthalpy) of a topomer is immaterial. For example, any
internal steric clashes that may result are completely ignored.

Topomer Similarity Selection of Screening Candi-
dates. The results reported here constitute the entirety of our
first two rounds of “lead hopping”: compound selection and
testing. Some slight procedural differences between the first
and second rounds are mentioned where appropriate.

Query structures were chosen from the weekly World Drug
Alert14 service, by filtering to exclude structures containing
molecular weights outside the range 100-800, and any
substructures not allowed in LeadQuest designs, notably
metallic elements. Taking one typical three-week period as an
example, these criteria yielded 352 usable query structures
from 771 World Drug Alert (WDA) records (46%).

The source of screening candidates was the current Lead-
Quest inventory, which numbers roughly 80000 compounds,
most composed of some 25 novel cores or scaffolds bearing two
side chains or “R groups”. Considerable design effort ensured
that the vast majority of these candidate compounds were
“drug-like” (fulfill Lipinski RO5 criteria and lack toxic sub-
structures) and as diverse from one another as full array
synthesis permitted, and that the library templates (cores/
scaffolds) had some medicinal rationale. (These design criteria
are emphasized as a possible partial rationalization of the
unexpectedly high “random hit rate”, discussed below.)

For each query structure, the topomer similar compounds
within LeadQuest were identified by searching with the dbtop
program,15 including pharmacophoric features as well as shape
in the similarity criteria. In both rounds a rather large topomer
radius of 250 was used, in order to obtain hits from certain
expected libraries. The second round hits were considered more
satisfactory, partially because of the correction of the concep-
tual oversight in topomer generation (standardization of ring
“puckering”) that had reduced hits from those expected librar-
ies.

Under these conditions, 141 of the 352 queries in the
example yielded at least one and at most 42113 “topomer
similar” structures from the ∼80000 LeadQuest records (40%).
These 141 queries represented over fifty different “activity
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classes”. It was further required that an assay judged com-
parable to the WDA-reported biology be commercially offered
at reasonable cost, and that the WDA-reported IC50 be 0.5 µM
or less. These criteria reduced the 141 usable example queries
to 28.

The final selections of candidate queries (plus assays)
reflected a combination of considerations, many more subjec-
tive and centering on the chemical series or library. How
tractable would a library be for follow-up activities, with
respect to numbers of compounds currently and potentially
available? Would hits from a library be viewed as “lead hops”
worthy of follow-up, considering other literature reports of
biological activity? How certain was the functional correspon-
dence between the original and available biological assays? A
limited number of FlexS comparisons between queries and hits
were also done, in particular specifically seeking query side
chains lacking a counterpart within the hits. However, these
comparisons were not at all decisive; for example, two of the
first round of seven query structures did not yield good FlexS
comparisons. Additional pragmatic criteria for deciding to test
a particular compound in a particular assay were the amount
of sample available (large, to maintain inventory while sup-
plying enough sample for possible IC50 determination) and the
number of structures selected (at least three per core, to
minimize the possibility of overlooking activity).

In the first round, mainly because of an optimistic expecta-
tion of immediately obtaining substantive SAR data, the
structural selections included almost every side chain repre-
sented within multiple topomer similar structures, for a total
of 257 compounds, each of course to be tested in a single
specified assay. In the second round, only the three to six
topomerically most similar structures derived from a particular
core were tested, yielding 51 compounds, again to be tested in
one of seven assays. One assay, PDE4, was assigned test
candidates in both rounds. Overall 308 topomer similarity
selected compounds were tested in one of thirteen different
assays, an average of 24 compounds tested per assay (308/13)
or ∼0.03% of the available compounds (24/∼80000).

All biological testing was performed at PanLabs MDS,16 with
the structural identity of the individual compounds of course
being unknown to that laboratory. The thirteen assays are
named in the first column of Table 1, along with catalog ID
numbers. The testing concentration was generally 10 µM.16

As the minimum criterion for an “active compound” we used
“g20% response at 10 µM”, a level of response which proved
reproducible in all but two of fifty subsequent IC50 determina-
tions. By this criterion, in the CCR5 and COX-2 assays no
active compounds were found, so for those assays IC50 deter-
minations were instead performed on the apparently most
active compounds (18% and 17% inhibition, respectively).
Results are also reported below for the more demanding
activity criteria of “g50%” and “g90%” at 10 µM.

Negative Control Experiments. The hit rates obtained
from topomer selection required suitable negative control
values for full evaluation. We at first expected that the hit
rate for randomly chosen compounds would be experimentally
indistinguishable from zero, but this was not found. The first
round of negative controls involved cross-testing fourteen of
the active compounds in two of the thirteen assays, two that
were functionally dissimilar to the assay that had generated
the hit. A further requirement of assay assignment in cross-
testing was that each of the thirteen assays had two com-
pounds assigned, except that PDE4 had four compounds
assigned because of its two query structures. Significant
inhibition was seen from six of these 28 tests. So the second
round assigned 28 compounds randomly chosen from LeadQuest
to be tested into the same assay mix, i.e., two compounds in
each assay except four in PDE4. Again six of 28 test results
were active. The third round involved retesting all the appar-
ently active compounds from the second round, as both original
and repurified samples, by a different laboratory. These three
comparable sets of test results agreed with one another, and
so the two confirmatory retest results are excluded from the
results reported here.

It became inescapable that the “average random hit rate”
for these compounds in these negative control experiments was
greater than zero and also likely to vary among the thirteen
assays. Accordingly the next two rounds were designed to
maximize the number of individual assays in which topomer
selection would significantly enhance the hit rate over random
selection, at minimum overall cost, by testing randomly
selected compounds in particular assays. A final round of
negative controls assigned additional randomly selected com-
pounds to four assays for which the negative control hit rate
was initially largest. Table 1 accumulates the results from all
six rounds of negative control experiments, excluding only the
retests mentioned.

Retrospectively Comparing Topomer Shape Similar-
ity with Tanimoto Coefficients of 2D Fingerprints as
Concentrators of Biologically Similar Structures. The
World Drug Index17 compiles literature and patent references
to “marketed and development drugs”. Its approximately
32000 entries were first filtered, by removing inorganic or
polymeric structures and by requiring an explicit “MECHA-
NISM” of biological activity, to yield 8832 structures. Among
these, the twenty most frequently reported biological mecha-
nisms, as determined by tabulation and sorting, are listed in
the first column of Table 2. The structures recorded as acting
by each of these mechanisms were identified by string searches.
Later, by inspection of individual compounds that were struc-
turally similar but apparently not biologically similar to some
particular compound, a few mechanistic synonyms were also
recognized and incorporated. The final mappings of text strings
to biological mechanism are shown in a footnote of Table 2.

By treating every compound belonging to any of the twenty
mechanistic classes as a query structure, two types of neighbor
lists were constructed from similarity searches of all 8832
structures as candidates. First, its Tanimoto neighbors were
identified and counted, by applying dbsimilar and standard
Unity 2D fingerprints, for all Tanimoto threshold values (radii)
between 0.40 and 0.95 in steps of 0.05. Second, its topomer
neighbors were also identified and counted, using the dbtop
program, for all topomer similarity radii between 90 and 240
in steps of 10. Finally, for each of the twenty types of activity
and each type and radius of neighbor list, the neighbor lists
matching these three criteria were merged, removing duplicate
structures. Such a merged neighbor list then contains exactly
those structures that are neighbors of any structure that acts
by a particular biological mechanism, still labeled so that the
subset of those neighbors that were reported to be active by
that same mechanism can be identified. Counts from some of
these merged neighbor lists are the starting points for Tables
2 and 3, in columns labeled “nbors” and “actv”, respectively.
Further analyses of these counts are described below.

Results

Table 1 summarizes the results of the prospective
selection of screening candidates by topomer similarity.
Each row of Table 1 corresponds to a particular biologi-
cal assay, designated in its upper left-hand corner by a
name and its catalog reference number in square
brackets. The query structure associated with that assay
is shown at the left, accompanied by a literature
reference in square brackets and its reported potency
(micromolar) in parentheses.18-30 Next to the query
structure is an example of a hit structure, one first
identified by a topomer similarity search using the
query structure shown and then found experimentally
to have the same activity as the query, with its micro-
molar potency established by IC50 determination shown
in parentheses. The structures of both query and exam-
ple hit have been drawn to emphasize their apparent
shape similarity. The right half of Table 1 provides the
overall screening statistics obtained for this assay, in
two lines, the upper line for topomer similarity selected
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Table 1. Results from Prospective Validation of “Lead Hopping” Based on Topomer Similarity
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compounds including the example hit, and the lower line
for the negative control experiments, mostly compounds
randomly chosen from the same (LeadQuest) screening
collection as detailed above. Each of these lines contains,
from left to right, the number of compounds tested (n)
and the numbers and percentages of those tested
compounds that were active, for various definitions of
activity, responses g20%, g50%, and g90%, all at the
administered concentration of 10 µM. Footnotes next to
the number of active compounds mark instances where
the frequency of activity for topomer similarity selected

compounds was significantly greater than that for
randomly selected compounds, according to a ø2 test.31

At the bottom of Table 1 are given the averaged hit
rates for each combination of the three activity criteria
with the two methods of compound selection. Here
are some important additional generalizations from
Table 1.

(1) The apparent improvements of 24%, 22%, and 19%
in hit rates for topomer similarity selections over
random selections are statistically significant, well over
the 95% confidence level for four of six comparisons

Table 1 (Continued)
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performed and just below the 95% confidence level for
the other two comparisons. For purposes of significance
testing, all the raw hit rates in Table 1 were continuity
corrected.32 Two types of significance tests were carried
out:31 paired samples (g20%, t ) 2.16; g50%, t ) 1.87;
g90%, t )1.83) and differences of means (g20%, t )
1.95; g50%, t ) 1.60; g90%, t )1.70).

(2) By the most widely accepted measure of structural
diversity, Tanimoto coefficients of “2D fingerprints”, the
queries and example hit structures shown are not at
all similar. The average Tanimoto coefficient for these
paired structures is 0.36, with little variance (the
maximum Tanimoto coefficient is 0.45). This level of
Tanimoto similarity is little greater than the expected

Table 2. Comparison of Topomers and Tanimoto 2D Fingerprints, in Ability to Concentrate Together Compounds Acting by the
Same Mechanism According to the Word Drug Index, for Smaller Structural Differences

Tanimoto neighbors topomer neighbors

g0.85 similarity “neighbors” same as 0.85 Tanimoto

biol mechanisma n nbrs actv hit rate, % enhce n T. radiusb nbrs actv hit rate, % enhce actv rat.c

antihistamines 419 220 137 62 13 399 90 230 179 78 16 1.25
antiserotonin 218 127 49 39 16 198 100 146 77 53 21 1.37
dopamine antagonist 349 282 124 44 11 330 120 327 191 58 15 1.33
dopaminergic 200 175 92 53 23 168 130 190 96 51 22 0.96
endothelin-A 74 41 24 59 70 73 130 41 37 90 108 1.54
HIV 86 40 24 60 62 79 130 42 34 81 83 1.35
leukotriene antagonist 227 73 41 56 22 218 100 82 65 79 31 1.41
muscarinic 26 38 6 16 54 25 150 40 11 28 93 1.74
opioid 59 56 20 36 53 52 140 61 28 46 69 1.29
parasympatholytic 252 220 96 44 15 246 90 229 107 47 16 1.07
parasympathomimetic 90 60 17 28 28 82 140 65 41 63 62 2.23
prostaglandin 610 330 231 70 10 600 110 360 302 84 12 1.20
protease inhibitors 62 20 15 75 107 55 90 20 20 100 142 1.33
protein kinase inhibitors 100 61 26 43 38 81 120 66 27 41 36 0.96
purine antagonist 434 292 197 67 14 423 120 305 229 75 15 1.11
serotoninergic 120 78 20 26 19 119 120 91 32 35 26 1.37
sympatholytic alpha 285 222 85 38 12 269 110 223 111 50 15 1.30
sympatholytic 725 613 274 45 5 699 110 626 365 58 7 1.30
sympathomimetic 414 297 166 56 12 386 120 321 228 71 15 1.27
topoisomerase-I 68 51 20 39 51 60 160 54 28 52 67 1.32

average 241 165 48 32 228 119 176 62 44 1.34
std deviation 16 26 20 20 38 0.28

a Correspondences to the World Drug Index codes: antihistamines, “ANTIHISTAMINE”; antiserotonin, ANTISEROTONIN; dopamine
antagonist, DOPAMINE-ANTAGONIST; dopaminergic, “DOPAMINERGIC”; endothelin-A, ENDOTHELIN-A and ET-A; HIV, HIV;
leukotriene antagonist, LEUKOTRIENE-ANTAGONIST; muscarinic, MUSCARINIC; opioid, OPIOID; parasympatholytic, PARASYM-
PATHOLYTIC; parasympathomimetic, PARASYMPATHOMIMETIC; prostaglandin, PROSTAGLANDIN and THROMBOXANE; protease
inhibitors, PROTEASE-INHIBITOR; protein kinase inhibitors, PROTEIN-KINASE*INHIBIT; purine antagonist, PURINE-ANTAGONIST
and CALCIUM-ANTAG; serotoninergic, SEROTONINERGI; sympatholytic, SYMPATHOLYTIC; sympatholytic alpha, SYMPATHOLYTIC-
ALPHA; sympathomimetic, SYMPATHOMIMETIC; topoisomerase-I, TOPOISOMERASE-I. b The topomer radius (in steps of 10) that
enclosed a number of structures fewer than the structures having a Tanimoto similarity g 0.85. See text. c The ratio of superiority, in
either hit rate or enhancement, of topomer similarity over Tanimoto similarity.

Table 3. Comparison of Topomers and Tanimoto 2D Fingerprints, in Ability to Concentrate Together Compounds Acting by the
Same Mechanism According to the Word Drug Index, for Larger Structural Differences

Tanimoto 2D fingerprints topomers

hit rates, % hit rates, %
coeff > 0.65 coeff > 0.55 radius < 200 radius < 240

mechanism nbrs actv nbrs actv >0.65
0.55-
0.65 <0.55 nbrs actv nbrs actv <200

200-
240 >240

core/
shell

enrich

shell/
tail

enrich

antihistamines 1320 247 3445 323 18.7 3.6 1.8 1216 330 3058 368 27.1 2.1 0.5 2.51 1.91
antiserotonin 1120 109 2931 156 9.7 2.6 1.1 1033 149 2869 172 14.4 1.3 0.4 3.07 1.16
dopamine antagonist 1041 242 2543 296 23.2 3.6 0.8 1303 282 3760 323 21.6 1.7 0.1 2.01 2.83
dopaminergic 734 147 1719 168 20.0 2.1 0.4 703 140 1892 165 19.9 2.1 0.0 1.01 10.26
endothelin-A 235 50 1038 55 21.3 0.6 0.2 109 51 698 56 46.8 0.8 0.2 1.61 1.59
HIV 179 46 797 54 25.7 1.3 0.4 91 54 1091 65 59.3 1.1 0.2 2.72 1.87
leukotriene antagonist 553 95 2066 132 17.2 2.4 1.4 846 152 3512 194 18.0 1.6 0.5 1.62 2.01
muscarinic 166 9 537 10 5.4 0.3 0.2 153 11 686 16 7.2 0.9 0.1 0.38 6.08
opioid 414 33 1510 43 8.0 0.9 0.2 246 36 887 46 14.6 1.6 0.1 1.07 4.95
parasympatholytic 915 170 2457 197 18.6 1.8 0.9 1056 205 3517 232 19.4 1.1 0.3 1.67 2.05
parasympathomimetic 289 33 945 39 11.4 0.9 0.6 289 55 1772 65 19.0 0.7 0.2 2.26 1.98
prostaglandin 1467 399 3411 472 27.2 3.8 2.5 1367 483 4562 561 35.3 2.4 0.9 2.00 1.81
protease inhibitors 83 32 623 38 38.6 1.1 0.3 89 40 997 44 44.9 0.4 0.1 2.94 0.83
protein kinase inhibitors 449 45 1424 51 10.0 0.6 0.7 799 46 2374 69 5.8 1.5 0.2 0.24 8.45
purine antagonist 1307 294 3211 340 22.5 2.4 1.7 1219 329 3964 382 27.0 1.9 0.8 1.50 1.59
serotoninergic 531 59 1669 86 11.1 2.4 0.5 831 80 1861 104 9.6 2.3 0.2 0.88 2.17
sympatholytic-alpha 1198 168 2616 218 14.0 3.5 1.1 1063 207 3371 247 19.5 1.7 0.4 2.83 1.32
sympatholytic 2236 505 4289 607 22.6 5.0 2.6 1913 588 4263 658 30.7 3.0 0.9 2.27 1.74
sympathomimetic 1066 282 2310 320 26.5 3.1 1.4 1052 343 2733 365 32.6 1.3 0.3 2.88 1.79
topoisomerase-I 209 31 648 37 14.8 1.4 0.4 105 34 614 40 32.4 1.2 0.2 2.53 1.34

average 776 2009 18.3 2.2 1.0 774 2424 25.3 1.5 0.3 1.90 2.89
std deviation 8.0 1.3 0.7 13.8 0.6 0.3 0.86 2.55
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mean Tanimoto similarity of two randomly chosen
structures (0.333).33

(3) The potencies of the topomer similarity selected
“lead hop” structures are much lower than those of the
corresponding query structures, by factors averaging
close to 1000× and ranging from 30× to 5000×.

Table 2 directly compares topomers and 2D finger-
prints in their retrospective abilities to concentrate bio-
logically similar structures together. Its baseline is the
performance of a “Tanimoto 2D fingerprint coefficient
of at least 0.85”, probably the most widely used diversity
criterion for avoiding redundancy when selecting struc-
tures for random screening.4 Table 2 may be understood
by working through an individual line of data in detail.
Its first (antihistamines) row begins with the 2D
fingerprint (left-hand) block, indicating that there are
419 structures (among 8832) having a recorded mech-
anism of ANTHISTAMINE. These 419 structures have
220 neighbors altogether, again from among 8832, when
the criterion for a neighbor is “Tanimoto 2D fingerprint
coefficient of at least 0.85”. Of these 220 neighbor
structures, 137 are included also among those 419
structures with the ANTIHISTAMINE mechanism,
hence “actv”, for a “hit rate” of 137/220 or 62%.

Much virtual screening research presents hit rate
improvements in a different way, as an “enhancement
factor” over the hit rate that would be expected for a
random selection from the same set of compounds. In
this case, for the ANTIHISTAMINE mechanism the
random hit rate would be 419/8832 or 4.7%, so “enhce”
becomes 62%/4.7% or 13. It may also be noted that
there must be a maximum possible “enhancement
factor” for any activity, in this case ANTIHISTAMINE.
For example, if every one of the 3% nearest of struc-
tures to any ANTIHISTAMINE was also itself an
ANTIHISTAMINE, the enhancement factor would be
100%/4.7% or 21. It is also likely that some of the
reportedly non-ANTIHISTAMINE near neighbors of an
ANTIHISTAMINE structure actually have antihista-
minic properties that have never been measured or
recorded. Thus the enhancement ratios reported in
Table 2 may be considered as lower bounds on values
that also have hard upper bounds.

The remaining right-hand block of Table 2 compares
topomer results to this baseline “g0.85 Tanimoto 2D
fingerprint” performance. Within each row a topomer
similarity radius was chosen to select roughly the same
number of maximally similar compounds that the Tan-
imoto 2D fingerprint “similarity g 0.85” criterion selects.
Continuing along the same row of data in detail, the
first column records that 20 of the 419 reported anti-
histamines could not be processed topomerically (usually
because of the lack of any acyclic bond whose cleavage
would yield two fragments each having more than three
atoms), leaving 399 antihistamines. Within a topomeric
radius of 90, there were 230 structures found among
the 8832 that were at least that similar to one of those
399 antihistamines. (In other words, a topomer radius
of 90 enclosed the fewest neighbors (230) that are still
more than the 220 count found for the Tanimoto radius
of 0.85.) Among these 230 topomerically similar struc-
tures, 179 were themselves recorded as antihistamines,
for a hit rate of 78% and an enhancement factor of 16.
The hit rate of 78% is higher than the hit rate of 62%

for the compounds selected by the Tanimoto g 0.85
threshold, by a ratio of 1.25.

The most important values in Table 2 are the aver-
ages at the bottom. Among these 20 structurally most
similar groups, comprising on average 3% of all struc-
tures, the superiority of topomer similarity over Tan-
imoto 2D fingerprint coefficient in concentrating to-
gether biologically similar structures is substantial, on
average (62%-48%)/48% or about 34% (p . 0.999, t )
5.43).

Table 3 again compares the concentrating tendencies
of topomer similarity and Tanimoto 2D fingerprint
coefficients, this time, however, comparing structures
whose similarities are much less likely to be obvious on
inspection. The baseline for Table 3 is a topomeric
similarity “shell” bounded by values between 200 and
240, a degree of similarity that has been productive in
proprietary “lead hopping” collaborations using to-
pomers, as well as in the “lead hopping” prospective
validation study above. By inspection it was found that
the Tanimoto 2D fingerprint coefficient “shell” that
contains similar numbers of neighbors, both inside of
the shell and “within” the shell extent itself, is bounded
by values between 0.65 and 0.55 (note the similarities
in “average” values for “nbrs” counts, at the bottom of
Table 3). The counts of neighbors and actives shown for
the Tanimoto coefficient thresholds of 0.65 and of
0.55 and the topomer similarities of 200 and of 240
were established as described for Table 2. From these
counts, the hit rates inside either of the threshold
values immediately follow, and the hit rates within the
shells bounded by these thresholds and beyond the
outsides of those shells then require only suitable
subtractions of the counts (including also the columns
n from Table 2).

Although an analysis similar to that summarized in
Table 2 using these larger radii yields similar topomer
superiorities, there is a more interesting way to consider
these data. The averaged hit rate of 2.2% for the
Tanimoto 2D fingerprint coefficient range 0.55-0.65 is
larger than the averaged hit rate of 1.5% for the topomer
similarity range of 200-240. At first glance this com-
parison might suggest superiority for the Tanimoto
coefficient. However, the better a structural descriptor
is in closely concentrating biologically similar struc-
tures, the fewer the possible occurrences of biologically
similar structures that remain at the greater structural
dissimilarities. Accordingly Table 3 also shows that the
hit rates inside and outside of these shells indicate a
stronger concentrating influence by topomer similarity,
with the averaged hit rate inside the shells favoring
topomers by 25.3% vs 18.2% and outside disfavoring
topomers by 0.3% vs 1.0%.

This concentrating tendency can also be expressed as
the ratio of the inside the shell (“core”) hit rate to the
hit rate within the shell itself. Similarly, the ratio of
the hit rate altogether outside the shell to the hit rate
within the shell indicates how strongly a concentrating
tendency persists for even larger structural dissimilari-
ties. A higher value of either ratio indicates a stronger
concentrating or enrichment performance. So division
of a ratio for topomer concentration by the correspond-
ing ratio for fingerprint concentration provides a direct
comparison, where larger values favor topomer concen-
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tration. The two rightmost columns of Table 3 show
these “ratio of ratios” values, the “core/shell enrich”
column comparing “inside shell” to “within shell” hit
rates and the “shell/tail enrich” column comparing
“within shell” to “outside shell”. From the averages of
these two columns it is apparent that topomers provide
almost double the inside/within shell enrichment of the
Tanimoto 2D fingerprint coefficient (p . 0.995, t ) 4.70),
and almost three times the within/outside shell enrich-
ment (p . 0.995, t ) 3.31).

Figure 1 is a cartoon that more simply though a bit
simplistically summarizes the results shown in Tables
2 and 3. Imagine a “typical” active structure taken from
the WDA. All the other structures in the WDA are then
ranked by similarity to that structure, using either 2D
fingerprint Tanimoto coefficients or topomers as the
similarity measurement. Every one of the 8832 com-
pounds lies somewhere on both of these targets, but the
preferable similarity measurement would place nearer
to the “bulls-eye” those compounds having the same
activity as that typical compound. Tables 2 and 3 show
that on average, when structural difference is defined
by topomers instead of 2D fingerprints, the nearest 3%
of other structures contains the higher frequency of the
structures with the same activity (62% vs 48%) and then
of course also the larger proportion of all the active
compounds (46% vs 31%). Conversely, with topomers the
most dissimilar 77% of structures includes the much
lower frequency of activity and the much lower propor-
tion of all the known inactive compounds.

However, please note that another impression this
cartoon may create, that there is only one structural
“center” for a particular activity, is false. In the experi-
ments described here, to be located among the center
3%, a structure needs to have only one very close
neighbor having the same activity, but that pair of
structures may also be far distant from other structures
having the same activity. Conversely a structure located
among the most distant 77% may (and probably does)

in fact have numerous structural neighbors with the
same activitysbut (for any of a number of valid reasons)
these neighbors are not recorded in the WDA. Thus little
confidence should be placed in the absolute values of
the performances shown in Figure 1, being as much
consequences of how the WDA dataset happens to have
accumulated as of the similarity measurements. Nev-
ertheless the superiority of topomers compared to 2D
fingerprints is clearly established by Figure 1 and its
underlying data, since presumably any biases from
dataset assembly affect both measures equally.

Yet all these retrospective comparisons of average
descriptor performance bear only indirectly and infer-
entially on the main objective of similarity selection. Is
either of these descriptors more effective in “lead
hopping”sin using nonobvious structural features to
recognize possible biological similarities between pairs
of molecules? Table 4 provides a few structural com-
parisons as a basis for this essentially subjective judg-
ment. Topomer neighbor lists had been generated for
each of the 8832 structural “queries”. From each activity
class, one or more of the longest neighbor lists were
scanned to identify examples of structures that (1)
belonged to the same activity class as that neighbor list’s
query and (2) were “distant neighbors”, according to the
Table 3 criteria for either 2D fingerprint Tanimotos or
topomers, i.e., within either the 0.55 to 0.65 Tanimoto
similarity shell or the 200 to 240 topomer similarity
shell. Although it is not claimed that this manual
selection of these example structures was unbiased,
there were often so few possibilities that perhaps half
the structures shown in Table 4 represent around half
of the candidate structures for that query. The results
of these selections make up the rows of structures in
Table 4, the left-most structures being the query that
generated the neighbor list, the next structure a distant
neighbor according to 2D fingerprints, and the two right-
hand structures distant neighbors according to to-
pomers. All structures have been drawn to show the
topomer shape correspondences, and, of course, the four
structures within any row of Table 4 all belong to the
same activity class or “mechanism”. Under each struc-
ture is shown its World Drug Index name identifier and,
for each of the three neighbors, its topomer similarity
to that query structure and its Tanimoto 2D fingerprint
similarity to that query structure.

Within Table 4, it is our perhaps subjective opinion
that the apparent structural dissimilarities of a query
from its right-hand pair of topomer distant neighbors
are much greater than that from its Tanimoto distant
neighbor. More objectively, the averages of the paired
similarity values (bottom of Table 4) reiterate that the
concentration of similarly active structures is much
higher with topomer similarity than with Tanimoto 2D
fingerprints. As illustrated in Figure 1, the structures
in Table 4 are roughly equally distant from their query
structures: they belong to similar “percentiles”, in terms
of the frequency distributions of their defining descriptor
values. However, the Tanimoto similar structures shown
are by topomer similarity placed much closer to their
query structures (the average topomer dissimilarity
value of 144 from the query for the Tanimoto similar
column of structures being much less than 200). Con-
versely, the topomer similar structures would be placed

Figure 1. Summary comparison of 2D fingerprint Tanimoto
coefficients to topomer similarity, in their abilities to “concen-
trate together” structures reportedly having the same biologi-
cal activity. Shown for each of the descriptors and their
respective ratings of “most similar” (3%) and “most dissimilar”
(77%) structures are the averaged percentages of the rated
structures that have the same activity and the averaged
percentages of all active structures that have that rating. The
underlying data are taken from Tables 2 and 3.
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Table 4. Examples of Structures Having the Same Biological Mechanism as a Query Structure, with Distant Structural Similarity to
That Query According to Either 2D Fingerprint (Tanimoto) or Topomer Shape (These Two Individual Similarity Values Are Shown
under Each Neighbor Structure)
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Table 4 (Continued)
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in more distant percentiles using the 2D fingerprint
Tanimoto coefficient (indeed, the average Tanimoto 2D
fingerprint coefficient of 0.33, between the query struc-
ture and the two topomer similar structures, coincides
with the Tanimoto 2D fingerprint coefficient expected
between random structures33).

It may be asked whether the active neighbor lists for
topomer similarity are supersets of the active neighbor
lists for Tanimoto 2D fingerprints, rather than disjoint
sets. Although this question has not been investigated
directly, the structures and similarity values shown in
Table 4 strongly suggest that the Tanimoto lists are
subsets of the topomer lists.

Discussion

The ∼20% improvement in hit rates achieved with
topomer similarity selection (bottom of Table 1) merits
comparison with the best results reported using other
virtual screening methodologies, especially when one
also considers:

(1) The concurrent goal of “lead hopping”. Indeed, on
the basis of “lead hops” per query rather than actives
per tested compound, our success rate is 11/13 or 85%!
(Every cell but two in the “TopSim Hit” column of Table
1 contains a structure significantly different from the
query structure that yet possesses the same biological
activity.)

(2) The minimal starting information, simply the
structure of a single active ligand.

(3) The number and variety of the biological systems
and the chemical structures. When investigating unfa-
miliar biological systems, it would seem that the con-
sistency or robustness that a compound selection meth-
odology has already shown across many biological
systems should be at least as important a consideration
as its best individual performance.

Before comparing selection methodologies, however,
two potential caveats with Table 1 must be addressed.
First, the hit rates for randomly selected LeadQuest
compounds, averaging 15%, 6%, and 2% for approximate
IC50 thresholds of 40 µM, 10 µM, and 1 µM, respec-
tively,34 are much higher than the hit rate generally
cited in HTS, 0.1% or less. This HTS conventional
wisdom is supported in the published literature by
individual reports of HTS hit rate of 0.02%35 and
e0.2%,36 for IC50 thresholds around 100 µM. Thus the
hit rates reported in Table 1 for random LeadQuest
compounds are about 2 orders of magnitude greater
than either of these two specific HTS hit rates. Informal
discussions of this large difference with experienced
screening scientists from several different organiza-
tions37 have generated at least six explanatory hypoth-
eses. (1) There has been experimental error. However,
recall that six of our negative control activities (over 25%
of all randomly chosen hits) were confirmed, with and
without additional test sample purification, by a differ-
ent testing organization. (2) The mix of biological assays
differs, with enzymatic assays being common in HTS
and less demanding receptor assays more common
within Table 1. (3) The design characteristics of a high
quality random screening library such as LeadQuest
may provide more hits than do typical corporate collec-
tions. (4) Experimental variables may be tuned by
independent screening organizations to favor more hits,

but oppositely in HTS. (5) The original query selections,
resulting from WDA reports of high activity and com-
mercial availability of the assay, may bias the assay mix
toward those yielding more hits. (6) LeadQuest might
contain substantially more frequent and powerful ag-
gregate formers than typical corporate collections;38

however, see the footnote. Regardless of the true cause-
(s), we eventually decided simply to treat as an empiri-
cal fact this unexpectedly high frequency of activity
among structures randomly chosen from LeadQuest and
continue. Of course, these high random hit rates may
instead be regarded only as a suspicious anomaly.
However, the biasing effect of our treatment is conser-
vative, depressing the lead hopping effectiveness that
we are then able to report for topomers.

A second possible caveat is that the potencies of the
TopSim hit structures in Table 1 average roughly 3
orders of magnitude lower than the Query potencies.
However the Query structures have typically been
optimized and the TopSim hits have not. The average
5 µM IC50 potencies for the eleven TopSim hits seem
typical of starting points when optimizing any new lead
series. And of course there may not in fact exist any
nanomolar potent agents among the 80000 selection
candidates.

So how does the ∼20% hit rate enhancement that
topomer selection provided in these “lead hops” compare
with other virtual screening performances? Much the
most popular virtual screening methodology is docking
into receptor crystal structures, and several impressive
docking results have recently appeared. Of 103 struc-
tures selected in part by docking to Checkpoint Kinase-
1, 36 (35%) structures representing four novel and
tractable chemical classes inhibited the enzyme with
IC50 values between 68 and 0.11 µM.39 Similarly, 127
of 365 (35%) docked structures inhibited protein tyrosine
phosphatase-1B with IC50 values between 100 and 1.6
µM.36 Even a docking hit rate of 100% has been
reported, with 9 Ki’s between 249 and 0.25 µM for
binding to tRNA-guanine transglycosylase by 9 struc-
tures of differing chemotype selected from over 800000
candidates.40 Docking has also produced extremely
potent inhibitors of carbonic anhydrase,41,42 although by
structural changes that seem too modest to be called
“lead hops”. Coupling of docking to a de novo structure
generator led to synthesis and testing of 18 novel HIV
reverse transcriptase inhibitors, 10 of which (56%) had
IC50’s between 100 and 0.1 µM.43 However, docking
calculations are by now so widely practiced that it seems
fair to assume that these publications represent the
most favorable among a wide distribution of results,
arguably comparable to the NMDA, p38a, serotonin
5HT1a, and SERT results within Table 1. Informal
estimates by industry aficionados of average hit rates
from docking calculations, 10% to 15%, resemble our
average of ∼20% hit rate enhancement for topomer
similarity selection. Turning to factors other than
prospective hit rates, docking and topomers also seem
equivalently strong in their “lead hopping” capabilities.
Comparing finally the breadth of their established
biological applicability, on the one hand, the large
number of docking research efforts has surely generated
a far larger number of successes than for topomers. On
the other hand, docking predictions are not even pos-
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sible for most of the assays in Table 1, because no X-ray
structure for the receptor is available.44

Selection of compounds by ligand “2D similarity”
measures such as Tanimoto 2D fingerprints provides a
well-established hit rate of at least 30%,4 but with few
if any occurrences of “lead hopping”. There are scattered
reports of moderately successful hit rate enhancements
with various flavors of “3D (pharmacophoric) search-
ing”.12,45 The only ligand-based selection methodologies
reported to yield “lead hopping” predictive performances
comparable to the best of those in Table 1 seem to be
two emerging approaches. Consensus predictions from
several QSAR models led to synthesis and testing of
nine arguably novel “functionalized amino acids”, seven
(78%) showing moderate anticonvulsant activities.46 A
highly sophisticated shape similarity methodology has
achieved retrospective classification accuracies of 60%
among diverse serotonin, histamine, muscarinic, and
GABAA ligands.47 These predictive performances are
similar to the best within Table 1. However, their
capabilities for prospective “lead hopping” and their
breadth of applicability have yet to be reported.

To summarize, prospective predictions of biological
properties based on topomer similarity seem at least
comparable in success rates and diversity of applicabil-
ity to the best prospective predictions reported using
other methodologies. This outcome mirrors the retro-
spective validation of topomer alignments in CoMFA,
which for fifteen data sets yielded potency predictions
whose average accuracy equaled that from the originally
published models.10

The retrospective comparisons of topomer similarity
and Tanimoto coefficients of 2D fingerprints in their
propensity to concentrate together biologically similar
structures, summarized in Tables 2 through 4, provide
independent and indeed much stronger evidence for a
superior biological predictiveness of topomer similarity.
“Tanimoto 2D fingerprint similarity” is the most thor-
oughly validated1-4 predictor of biological similarity and
the most widely used, particularly when selecting
structures to follow up initial hits. The 30+% hit rate
for structures having a “g0.85 Tanimoto” to another
active structure,4 though retrospective, is at least as
high as and more widely confirmed than any other
prospective hit rate. Yet the comparative results in
Tables 2 and 3 indicate that, over a very wide range
and diversity of compounds (8832) and “activity classes”
(20), topomer similarity decisively outperforms “2D
fingerprint Tanimotos”.48

(1) When the 3% of structures “most similar” to
structures having a particular activity are selected,
either by topomers or 2D fingerprint Tanimotos, from
a large pool of (biologically active) structures (Table 2),
the topomer most similar 3% contains on average a third
more other structures having the same activity (62%)
than does the 2D fingerprint Tanimoto most similar 3%
(48%). Thus the occurrence of “false positives” is sub-
stantially lower for topomers than for 2D fingerprint
Tanimotos.

(2) The one-third topomer improvement in selectivity
is quite consistent throughout the various activity
classes. In only two of the twenty individual enrichment
comparisons do Tanimoto 2D fingerprints exceed to-

pomers (“dopaminergic” and “protein kinase”), by a
meager 2% in both cases.

(3) Almost exactly the same comparison obtains when
the most similar ∼10%, rather than ∼3%, structures are
selected by topomers and by Tanimoto 2D fingerprints
(Table 3), the largest difference being that “serotonin-
ergic” replaces “dopaminergic” as one of the two Tan-
imoto-superior activity classes.

(4) Conversely, if one considers the 75% of compounds
“least similar” to structures having a particular activity,
within this large pool of biologically active structures
(Table 3), either by topomers or Tanimoto 2D finger-
prints, the Tanimoto-not-similar set contains three
times the number of actives (1.0%) as does the topomer-
not-similar set (0.3%). Thus the “false negative” rate is
much lower for topomers than for Tanimoto 2D finger-
prints.

(5) This 300% improvement by topomers in “separat-
ing the chaff from the wheat” is even more consistent
than the 33% enrichment. All twenty of the individual
activity classes leave fewer “structural outliers” in the
topomer-not-selected 75% of compounds than in the
Tanimoto-not-selected 75% of compounds.

Of course the major weakness of 2D fingerprints is
the low probability that any “lead hops” will result from
their use. There are many successful lead hops buried
within these 8832 World Drug Index structures (indeed,
from its method of construction, most structural lead
hops that were successful enough to reach consideration
for clinical evaluation should be present!). As described
above, on the basis of unpublished lead hop successes
such as those shown in Table 1, we chose a topomer
similarity “shell” between 200 and 240 as being espe-
cially productive of unambiguous lead hops. Among this
set of compounds, this topomer similarity “shell” hap-
pens to contain the structures that are between the 9th
and the 23rd percentiles most topomerically similar to
structures belonging to a particular activity class. The
Tanimoto 2D fingerprint shell that was roughly com-
parable to this topomer shell in its percentile distribu-
tion of “similar” structures was bounded by Tanimoto
coefficients of 0.55 and 0.65. (Table 3).

Which “shell” contains more acceptable “lead hops”?
Table 4 provides a few structural data points that
address this essentially subjective question. Shown for
an arbitrarily chosen though relatively “central” query
structure are “established lead hops”, structures that
were in the Tanimoto and/or topomer “lead hopping
shells”, relative to the query structure shown (“potential
lead hops”), and which also belong to the same activity
class as the query (“actual lead hops”). Subjectively it
seems to us that as structural “lead hops” the topomer
selections have decisively higher quality. More objec-
tively, the “Tanimoto 2D fingerprint” selections are on
average too topomer similar to the query to be convinc-
ing lead hops, while the “topomer” lead hops are on
average too 2D-fingerprint-dissimilar to be Tanimoto-
detectable (the average 0.33 Tanimoto coefficient for
these topomer “lead hops” being equivalent to the
average Tanimoto between randomly chosen struc-
tures).

Since it is well-known that 2D fingerprints are not
very effective in “lead hopping”, it may be asked how
well other 3D based similarity approaches would have
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performed in such a study. Though surprising when first
observed,1 it is by now well confirmed that in general
3D based similarity approaches (typically pharmaco-
phoric) have not concentrated activity together even as
well as have 2D fingerprints, while we have just seen
that topomers instead concentrate activity much better
than do 2D fingerprints. Yet, despite the unpromising
performance of most 3D descriptors so far, the very
superiority of the topomer approach constitutes proof
that other superior 3D similarity descriptions may well
exist, awaiting only discovery and/or validation.

Why does the topomer abstraction of physicochemical
reality predict biological similarity at least as well as
anything else, even “Tanimoto 2D fingerprints”? (Not,
to be sure, that the reasons for the relative effectiveness
of Tanimoto 2D fingerprints are well understood!) Our
current thoughts on this subject are the following. The
main emphasis in the development of computer-aided
molecular design methodologies has, quite understand-
ably, been increasingly accurate physicochemical model-
ing. However, as our understanding of the processes
responsible for drug action slowly improves, it becomes
increasingly clear how daunting is the molecular com-
plexity that a rigorously physicochemical model of drug
action should address. For example there are many
conformational and tautomeric states of every potential
drug molecule that might bind productively to any of
the many more conformational and tautomeric states
of their intended biomacromolecular target. The strengths
of any interaction may be significantly modified by the
many local configurations of solvent and other biochemi-
cal species. It is clear that only some small subset of
the resulting combinatorial combinations of physico-
chemical states can practically be considered, that the
choice of that subset must be at least somewhat
arbitrary, and that even some relatively small subset
of these possibilities for only one potential drug molecule
will be computationally costly to analyze. But today
hundreds of thousands of structures are routinely
tested, so that many orders of magnitude more struc-
tures should be evaluated computationally as candidates
for testing.

The topomer description of molecular structure re-
sulted from acknowledgment of these frustrations in-
herent in the dominant purely physicochemical para-
digm and a consequent decision to try an altogether
different approach. The central strategy in the develop-
ment of topomers has been to substitute relentless
consistency, computational expedience, and lots of ex-
perimental data for physicochemical accuracy, hoping
thereby for more productive comparisons of molecular
shape. However, such an idiosyncratic approach is not
easily justified except by empirical results such as these.

This superiority of topomer similarity in forecasting
biological properties of structures is particularly useful
when combined with the extraordinary speed of topomer
similarity searching within ChemSpace virtual libraries.
For example, all the “lead hops” illustrated in Table 1
could have been discovered directly, by experimentally
screening all ∼80000 compounds in all thirteen assays.
On the other hand, complete topomer similarity searches
of 2 × 1013 structures,7 roughly a million times more
compounds than have ever been registered into Chemi-
cal Abstracts, each readily synthesizable from com-

mercially offered building blocks, routinely finish in a
few hours.49 And of course, when these 2 × 108 times
more than 80000 candidates are the candidates, many
of the potential lead hops retrieved are far more
attractive than those reported in Table 1. The flexibility
and responsiveness resulting from such a rapid, flexible,
and accurate means of candidate structure selection
would also facilitate other trends in drug discovery. For
example, the growing emphasis on considering multiple
lead series and multiple biological endpoints during
earlier stages of drug discovery, reinforced by the
plummeting costs of multiplexed data acquisition, would
imply that combinatorial numbers of SAR may soon
need to be simultaneously generated and optimized. We
are not aware of any other methodologies as appropriate
as the related “topomer CoMFA”10 for addressing these
cheminformatics challenges emerging from “systems
biology” and “chemical genomics”.

Conclusion
These two validation studies, seemingly among the

largest and most complete to be published for any
computational methodology, indicate that the topomer
description of molecular structure is more effective in
predicting “lead hops” (otherwise unexpected biological
activity) than other ligand-based approaches, and at
least comparable in its effectiveness to receptor-based
approaches such as docking. Considering also the
enormous speed superiority of topomer searching within
virtual libraries,7 which can make unprecedentedly vast
structure spaces usefully accessible and the increasing
biological complexities of drug discovery more tractable,
it seems reasonable to maintain that topomer searching
represents a significant addition to the methodologies
potentially available for meeting growing demands on
medicinal chemists.
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